TL;DR

What TASK #2 from the Perl Weekly Challenge #117 could (wellâ€¦ SHOULD) have beenâ€¦

Fellow participants to the Perl Weekly Challenge, I have discovered a shocking secret.

We were all tricked. By none other thanâ€¦ well, you know.

Conspiracy theory circles knew this since ages: the Find Possible Paths challenge was supposed to require us count how many different ways to go from the top to the bottom-right, not to enumerate them! Alas, nobody listened to them.

I guess that, were the original challenge published instead:

$S_0 = 1 \\ S_1 = 2 \\ S_n = 3S_{n - 1} + \sum_{k = 1}^{n - 2}S_{k}S_{n - k - 1}$

This can be (could have been?) coded in Raku like this:

#!/usr/bin/env raku
use v6;
sub sn (Int:D $N where * > 0) { state$sns = [1, 2];
while $N >$sns.end {
my $n =$sns.elems;
$sns.push: [+] 3 *$sns[*-1],
(1 .. $n - 2).map({$sns[$_] *$sns[$n -$_ - 1]}).Slip;
}
return $sns[$N];
}

put $_, ' -> ', sn($_) for 1 .. 20;


I start to get the gist of itâ€¦ except for flat and when to use Slip, which still trick me almost every time đź™„

Wellâ€¦ there we are at the end. Now you know!

Comments? Octodon, , GitHub, Reddit, or drop me a line!