TL;DR

Let’s add a little improvement to the implementation of Conway’s Game of Life.

In the Game of Life, the rules are pretty simple. The next state of a cell depends in the previous state like this:

• if the cell is alive, then it will survive if and only if it is surrounded by 2 or 3 alive cells;
• if the cell is empty, it will spawn new life if it has exactly 3 alive cells around, otherwise it will stay empty.

So… counting the number of cells around the target one is pretty important.

In the first implementation, it’s only about counting all values around the target cells:

`````` 1 sub alive_around (\$field, \$y, \$x) {
2    my \$n = 0;
3    for my \$dy (-1 .. 1) {
4       for my \$dx (-1 .. 1) {
5          ++\$n if \$field->[\$y + \$dy][\$x + \$dx] eq '#';
6       }
7    }
8    --\$n if \$field->[\$y][\$x] eq '#';
9    return \$n;
10 } ## end sub alive_around
``````

Each cell’s contents will be counted over… and over… and over. About least 9 times, as a matter of fact. Can we do better?

The new implementation keeps track of the surrounding cells horizontally, on three lines. This allows calculating the value at a target cell by simply adding up these values, possibly removing one for the specific target cell (line 19, where it only makes sense).

`````` 1 sub life_tick (\$field) {
2    my @retval;
3    my \$nx     = \$field->->@*;
4    my @previous = my @current = (0) x \$nx;
5    for my \$y (0 .. \$#\$field - 1) {
6       my (\$irow, \$nrow) = \$field->@[\$y, \$y + 1];
7       my @next = (0) x \$nx;
8       \$next[-1] = \$nrow->[-2] eq '#' ? 1 : 0;
9       my @row  = (' ') x \$nx;
10       push @retval, \@row;
11       for my \$x (0 .. \$nx - 1) {
12          \$next[\$x] = \$next[\$x - 1] - (\$nrow->[\$x - 2] eq '#' ? 1 : 0)
13             + (\$nrow->[(\$x + 1) % \$nx] eq '#' ? 1 : 0);
14          my \$around = \$previous[\$x] + \$current[\$x] + \$next[\$x];
15          if (\$irow->[\$x] eq ' ') {
16             \$row[\$x] = '#' if \$around == 3;
17          }
18          elsif (\$irow->[\$x] eq '#') {
19             \$around--; # the item itself must not be counted
20             \$row[\$x] = '#' if \$around == 2 || \$around == 3;
21          }
22          else {
23             \$row[\$x] = \$irow->[\$x];
24          }
25       } ## end for my \$x (0 .. \$nx - 1)
26       @previous = @current;
27       @current = @next;
28    } ## end for my \$y (1 .. \$#\$field...)
29    push @retval, \$field->[-1];
30    return \@retval;
31 } ## end sub life_tick (\$field)
``````

The three arrays `@previous`, `@current` and `@next` keep track of these horizontal values. When a row is complete (i.e. after line 25), these array are shifted to prepare for the next loop.

After doing this, I realize that I don’t want to benchmark the improvements, if any… I’m too scared!!!